Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Biomolecules ; 13(5)2023 05 11.
Article in English | MEDLINE | ID: covidwho-20239134

ABSTRACT

It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of ß-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.


Subject(s)
Alzheimer Disease , COVID-19 , Diabetes Mellitus , Metabolic Diseases , Neurodegenerative Diseases , Humans , AMP-Activated Protein Kinases/metabolism , Post-Acute COVID-19 Syndrome , TOR Serine-Threonine Kinases/metabolism , Alzheimer Disease/metabolism , Neurodegenerative Diseases/metabolism , Brain/metabolism
2.
Alzheimers Dement ; 2023 Apr 23.
Article in English | MEDLINE | ID: covidwho-2290573

ABSTRACT

INTRODUCTION: Cognitive abilities have substantial heritability throughout life, as shown by twin- and population-based studies. However, there is limited understanding of the genetic factors related to cognitive decline in aging across neurocognitive domains. METHODS: We conducted a meta-analysis on 3045 individuals aged ≥65, derived from three population-based cohorts, to identify genetic variants associated with the decline of five neurocognitive domains (attention, memory, executive function, language, visuospatial function) and global cognitive decline. We also conducted gene-based and functional bioinformatics analyses. RESULTS: Apolipoprotein E (APOE)4 was significantly associated with decline of memory (p = 5.58E-09) and global cognitive function (p = 1.84E-08). We identified a novel association with attention decline on chromosome 9, rs6559700 (p = 2.69E-08), near RASEF. Gene-based analysis also identified a novel gene, TMPRSS11D, involved in the activation of SARS-CoV-2, to be associated with the decline in global cognitive function (p = 4.28E-07). DISCUSSION: Domain-specific genetic studies can aid in the identification of novel genes and pathways associated with decline across neurocognitive domains. HIGHLIGHTS: rs6559700 was associated with decline of attention. APOE4 was associated with decline of memory and global cognitive decline. TMPRSS11D, a gene involved in the activation of SARS-CoV-2, was implicated in global cognitive decline. Cognitive domain abilities had both unique and shared molecular pathways across the domains.

3.
Coronaviruses ; 3(6):25-38, 2022.
Article in English | EMBASE | ID: covidwho-2257124

ABSTRACT

The new COVID-19 presents some comorbidities, such as obesity, Alzheimer's, and coronary risk, among others. We argue that the current understanding of some of these clinical conditions may illuminate the design of future COVID-19 studies to account for a bias that may be the cause of the para-doxical associations between COVID-19 mortality and cytokine storm. Given that we know some of the genetic mechanisms behind these diseases, it is possible to circumscribe these studies to some key genes that help us understand why some patients experience a cytokine storm and what the treatment strategies might be. In this paper, we discuss the role of A2M and APOE genes. A2M encodes a multifaceted protein which is highly expressed in the liver and released to the bloodstream associated with the apolipopro-tein E. This association depends on the APOE genotype. A2M has protease-clearing activity binding of a broad range of proteases, such as thrombin and Factor Xa. It also presents the ability to bind to proin-flammatory ligands, like cytokines. Further, A2M acts as chaperone of misfolded substrates, like beta-amyloid peptide. The last two molecular functions grant it a key role in regulating both inflammatory processes, as well as extracellular protein homeostasis. For these reasons, we conclude that A2M-APOE association will have prophylactic, therapeutic, and prognostic implications;and the proper understanding of the physiological role of APOE and A2M in controlling inflammatory processes can shed further light on the putative treatment of COVID-19-derived cytokine storm.Copyright © 2022 Bentham Science Publishers.

4.
J Transl Med ; 21(1): 103, 2023 02 09.
Article in English | MEDLINE | ID: covidwho-2239702

ABSTRACT

BACKGROUND: Recent numerous epidemiology and clinical association studies reported that ApoE polymorphism might be associated with the risk and severity of coronavirus disease 2019 (COVID-19), and yielded inconsistent results. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptor expressed on host cell membranes. METHODS: A meta-analysis was conducted to clarify the association between ApoE polymorphism and the risk and severity of COVID-19. Multiple protein interaction assays were utilized to investigate the potential molecular link between ApoE and the SARS-CoV-2 primary receptor ACE2, ApoE and spike protein. Immunoblotting and immunofluorescence staining methods were used to access the regulatory effect of different ApoE isoform on ACE2 protein expression. RESULTS: ApoE gene polymorphism (ε4 carrier genotypes VS non-ε4 carrier genotypes) is associated with the increased risk (P = 0.0003, OR = 1.44, 95% CI 1.18-1.76) and progression (P < 0.00001, OR = 1.85, 95% CI 1.50-2.28) of COVID-19. ApoE interacts with both ACE2 and the spike protein but did not show isoform-dependent binding effects. ApoE4 significantly downregulates ACE2 protein expression in vitro and in vivo and subsequently decreases the conversion of Ang II to Ang 1-7. CONCLUSIONS: ApoE4 increases SARS-CoV-2 infectivity in a manner that may not depend on differential interactions with the spike protein or ACE2. Instead, ApoE4 downregulates ACE2 protein expression and subsequently the dysregulation of renin-angiotensin system (RAS) may provide explanation by which ApoE4 exacerbates COVID-19 disease.


Subject(s)
COVID-19 , Humans , Renin-Angiotensin System/physiology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/pharmacology , SARS-CoV-2 , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E4/pharmacology , Down-Regulation/genetics , Spike Glycoprotein, Coronavirus/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism
5.
Transl Neurodegener ; 11(1): 40, 2022 09 11.
Article in English | MEDLINE | ID: covidwho-2228783

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a life-threatening disease, especially in elderly individuals and those with comorbidities. The predominant clinical manifestation of COVID-19 is respiratory dysfunction, while neurological presentations are increasingly being recognized. SARS-CoV-2 invades host cells primarily via attachment of the spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor expressed on cell membranes. Patients with Alzheimer's disease (AD) are more susceptible to SARS-CoV-2 infection and prone to severe clinical outcomes. Recent studies have revealed some common risk factors for AD and COVID-19. An understanding of the association between COVID-19 and AD and the potential related mechanisms may lead to the development of novel approaches to treating both diseases. In the present review, we first summarize the mechanisms by which SARS-CoV-2 invades the central nervous system (CNS) and then discuss the associations and potential shared key factors between COVID-19 and AD, with a focus on the ACE2 receptor, apolipoprotein E (APOE) genotype, age, and neuroinflammation.


Subject(s)
Alzheimer Disease , COVID-19 , Aged , Alzheimer Disease/epidemiology , Angiotensin-Converting Enzyme 2 , Humans , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
6.
J Alzheimers Dis ; 91(3): 1049-1058, 2023.
Article in English | MEDLINE | ID: covidwho-2224721

ABSTRACT

BACKGROUND: Older age is a major risk factor for severe COVID-19 disease which has been associated with a variety of neurologic complications, both acutely and chronically. OBJECTIVE: We sought to determine whether milder COVID-19 disease in older vulnerable individuals is also associated with cognitive and behavioral sequelae. METHODS: Neuropsychological, behavioral, and clinical outcomes before and after contracting COVID-19 disease, were compared in members of two ongoing longitudinal studies, the Arizona APOE Cohort and the national Alzheimer's Disease Research Center (ADRC). RESULTS: 152 APOE and 852 ADRC cohort members, mean age overall roughly 70 years, responded to a survey that indicated 21 APOE and 57 ADRC members had contracted COVID-19 before their ensuing (post-COVID) study visit. The mean interval between test sessions that preceded and followed COVID was 2.2 years and 1.2 years respectively for the APOE and ADRC cohorts. The magnitude of change between the pre and post COVID test sessions did not differ on any neuropsychological measure in either cohort. There was, however, a greater increase in informant (but not self) reported cognitive change in the APOE cohort (p = 0.018), but this became nonsignificant after correcting for multiple comparisons. CONCLUSION: Overall members of both cohorts recovered well despite their greater age-related vulnerability to more severe disease.


Subject(s)
Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Humans , Aged , Neuropsychological Tests , COVID-19/complications , Cognition , Longitudinal Studies , Alzheimer Disease/complications , Alzheimer Disease/psychology , Apolipoproteins E/genetics , Apolipoprotein E4 , Cognitive Dysfunction/etiology
7.
Curr Neurovasc Res ; 20(1): 162-169, 2023.
Article in English | MEDLINE | ID: covidwho-2224629

ABSTRACT

Apolipoprotein E4 (APOE4) is one of the primary genetic risk factors for late-onset of Alzheimer's disease (AD). While its primary function is to transport cholesterol, it also regulates metabolism, aggregation, and deposition of amyloid-ß (Aß) in the brain. The disruption in the generation and removal of Aß in the brain is the primary cause of memory and cognitive loss and thus plays a significant role in the development of AD. In several prior genetic investigations, the APOE4 allele has been linked to higher susceptibility to severe acute respiratory syndrome (SARSCoV- 2) infection and COVID-19 mortality. However, information on the involvement of APOE4 in the underlying pathology and clinical symptoms is limited. Due to the high infection and mortality rate of COVID-19 in AD individuals, challenges have been identified in the management of AD patients during the COVID-19 pandemic. In order to provide evidence-based, more effective healthcare, it is critical to identify underlying concerns and, preferably, biomarkers. The risk variant APOE4 imparts enhanced infectivity by the underlying coronavirus SARS-CoV-2 at a cellular level, genetic level, and route level. Here we review existing advances in clinical and basic research on the AD-related gene APOE, as well as the role of APOE in AD pathogenesis, using neurobiological evidence. Moreover, the role of APOE in severe COVID-19 in Alzheimer's patients has also been reviewed.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , COVID-19 , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Brain/metabolism , COVID-19/metabolism , Pandemics , SARS-CoV-2
8.
Advances in Gerontology ; 12(4):386-395, 2022.
Article in English | Web of Science | ID: covidwho-2193602

ABSTRACT

The role of neuronal inflammation developing during the formation of amyloid plaques and Lewy bodies is investigated. The influence of various exogenous and endogenous factors on the development of neuroinflammation is established, but the role of various infectious agents in the development of this process is much less studied. Today, the existence of a universal trigger mechanism of the neurodegenerative process is obvious: a specific pathogen of a bacterial or viral nature (including long-term persistent in nervous tissue in a latent state), reactivating, penetrates into certain cerebral structures, where it is influenced by either A beta or resident macrophages of the central nervous system, which, in turn, are activated and induce the release of proinflammatory cytokines, leading to the development of neuronal inflammation, autophagy and neurodegeneration. The reactivation of latent infection, such as herpes, in APOE4 carriers significantly increases the risk of development of Alzheimer's disease. Class-II genes of the HLA locus (HLA II) may be related to the progression of neurodegenerative diseases. An increase in iron levels in the glia is induced by inflammation, which leads to neurodegeneration. Disruption of the homeostasis of redox-active metals, iron and copper, is an integral part of the pathogenesis of Alzheimer's disease and Parkinson's disease. The developing neuroinflammation leads to intensification of the processes of peroxidation, oxidation of metals and the development of ferroptosis.

9.
CNS Neurol Disord Drug Targets ; 2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2197838

ABSTRACT

COVID-19, which primarily affects the pulmonary system, turned out to be a global pandemic, whereas the effects on other systems are still unknown. SARS-CoV-2, binds to angiotensin-converting enzyme 2 (ACE2) receptors in the lungs, causing pneumonia-like symptoms. The same ACE receptors are also present in organs other than the lungs. Therefore, there is a need to study the impact of coronavirus on other human body organs. Recently, UK Biobank reports on the genetic risk factor of the virus attack. A double mutation in the apolipoprotein E (APOE4) allele has shown a significant role in COVID-19. The same APOE4 mutation has already been proven to hold a key role in developing early-onset Alzheimer's disease (EOAD). Despite this data, Alzheimer's disease is believed to be a comorbidity of COVID-19. Previous virus attacks on the same viral family, Coronaviridae, produced neurological effects like neurodegeneration, neuronal inflammation, and other central nervous system-related dysfunctions. Since the long-term implications of COVID-19 are unknown, more research into the impact of the virus on the central nervous system is needed. Both COVID-19 and AD share a common genetic factor, so that AD patients may have a greater risk of SARS-CoV-2. Here, in this review, we have briefly discussed the role of APOE4 in the pathogenesis of AD and SARS-CoV-2, along with their treatment strategy, current scenario, and possible future directions.

10.
Diagnostics (Basel) ; 12(10)2022 Sep 25.
Article in English | MEDLINE | ID: covidwho-2043624

ABSTRACT

(1) Background: Older people suffer from cognitive decline; several risk factors contribute to greater cognitive decline. We used acquired (COVID-19 infection) and non-modifiable (presence of APOE rs429358 and rs7412 polymorphisms) factors to study the progression of subjective cognitive impairment while observing patients for one year. Cognitive training was used as a protective factor. (2) Methods: Two groups of subjects over the age of 65 participated in the study: group with subjective cognitive decline receiving cognitive training and individuals who did not complain of cognitive decline without receiving cognitive training (comparison group). On the first visit, the concentration of antibodies to COVID-19 and APOE genotype was measured. At the first and last point (1 year later) the Mini-Mental State Examination scale and the Hospital Anxiety and Depression Scale were performed. (3) Results: COVID-19 infection did not affect cognitive function. A significant role of cognitive training in improving cognitive functions was revealed. Older adults with APOE-ε4 genotype showed no positive effect of cognitive training. (4) Conclusions: Future research should focus on cognitive dysfunction after COVID-19 in long-term follow-up. Attention to the factors discussed in our article, but not limited to them, are useful for a personalized approach to maintaining the cognitive health of older adults.

11.
Annals of Phytomedicine-an International Journal ; 11(1):266-275, 2022.
Article in English | Web of Science | ID: covidwho-1980048

ABSTRACT

Modern lifestyle and fast-food consumption nature increase the cholesterol consumption and deposition in our body. It is becoming one of the key risk factors in AD development. Several genes and receptors play crucial roles in such developments. Consumption of high-fat diet and absence of physical activity can lead to obesity. Higher BMI is the indicator of obesity. Higher BMI accelerates AD development due to brain atrophy, neuroinflammation, and oxidative stress in the hippocampus. Obesity in childhood and adolescence leads to dementia and AD in later life. COVID harmfully affects Alzheimer's patients, and it is also reported that COVID related dementia and neurodegeneration is one of the prominent post-COVID complications. This review summarises the role of cholesterol in Alzheimer's disease development and the importance of genes, receptors, and diet behind this.

13.
Adv Gerontol ; 35(2):263-273, 2022.
Article in Russian | PubMed | ID: covidwho-1897968

ABSTRACT

The role of neuronal inflammation developing during the formation of amyloid plaques and Lewy bodies has been investigated. The influence of various exogenous and endogenous factors on the development of neuroinflammation has been established, but the role of various infectious agents in the development of this process has been much less studied. Today, the existence of a universal trigger mechanism of the neurodegenerative process is obvious: a specific pathogen of a bacterial or viral nature (including a long-term persistent in the nervous tissue in a latent state), reactivating, penetrates into certain cerebral structures, where it is influenced by either Aβ or resident macrophages of the central nervous system, which, in turn, are activated and induce the release of pro-inflammatory cytokines, leading to the development of neuronal inflammation, autophagy and neurodegeneration. Reactivation of latent, such as herpes, infection in individuals who are carriers of APOE4 significantly increases the risk of developing Alzheimer's disease. Class II genes of the HLA locus (HLA II) may be related to the progression of neurodegenerative diseases. The increase in iron levels in the glia is induced by inflammation, which leads to neurodegeneration. Disruption of the homeostasis of redox-active metals, iron and copper, is an integral part of the pathogenesis of Alzheimer's disease and Parkinson's disease. The developing neuroinflammation leads to the intensification of the processes of peroxidation, oxidation of metals and the development of ferroptosis.

14.
Acta Neuropathol Commun ; 9(1): 199, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-1634344

ABSTRACT

Apolipoprotein E ε4 allele (APOE4) has been shown to associate with increased susceptibility to SARS-CoV-2 infection and COVID-19 mortality in some previous genetic studies, but information on the role of APOE4 on the underlying pathology and parallel clinical manifestations is scarce. Here we studied the genetic association between APOE and COVID-19 in Finnish biobank, autopsy and prospective clinical cohort datasets. In line with previous work, our data on 2611 cases showed that APOE4 carriership associates with severe COVID-19 in intensive care patients compared with non-infected population controls after matching for age, sex and cardiovascular disease status. Histopathological examination of brain autopsy material of 21 COVID-19 cases provided evidence that perivascular microhaemorrhages are more prevalent in APOE4 carriers. Finally, our analysis of post-COVID fatigue in a prospective clinical cohort of 156 subjects revealed that APOE4 carriership independently associates with higher mental fatigue compared to non-carriers at six months after initial illness. In conclusion, the present data on Finns suggests that APOE4 is a risk factor for severe COVID-19 and post-COVID mental fatigue and provides the first indication that some of this effect could be mediated via increased cerebrovascular damage. Further studies in larger cohorts and animal models are warranted.


Subject(s)
Apolipoprotein E4/genetics , COVID-19/complications , COVID-19/genetics , Cerebral Hemorrhage/genetics , Mental Fatigue/genetics , Patient Acuity , Adult , Aged , Autopsy , Biological Specimen Banks , COVID-19/diagnosis , COVID-19/epidemiology , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/epidemiology , Cohort Studies , Female , Finland/epidemiology , Genetic Association Studies/methods , Heterozygote , Humans , Male , Mental Fatigue/diagnosis , Mental Fatigue/epidemiology , Microvessels/pathology , Middle Aged , Prospective Studies , Risk Factors , Young Adult , Post-Acute COVID-19 Syndrome
15.
J Pers Med ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1554837

ABSTRACT

Emerging studies have suggested several chromosomal regions as potential host genetic factors involved in the susceptibility to SARS-CoV-2 infection and disease outcome. We nested a COVID-19 genome-wide association study using the GR@ACE/DEGESCO study, searching for susceptibility factors associated with COVID-19 disease. To this end, we compared 221 COVID-19 confirmed cases with 17,035 individuals in whom the COVID-19 disease status was unknown. Then, we performed a meta-analysis with the publicly available data from the COVID-19 Host Genetics Initiative. Because the APOE locus has been suggested as a potential modifier of COVID-19 disease, we added sensitivity analyses stratifying by dementia status or by disease severity. We confirmed the existence of the 3p21.31 region (LZTFL1, SLC6A20) implicated in the susceptibility to SARS-CoV-2 infection and TYK2 gene might be involved in COVID-19 severity. Nevertheless, no statistically significant association was observed in the COVID-19 fatal outcome or in the stratified analyses (dementia-only and non-dementia strata) for the APOE locus not supporting its involvement in SARS-CoV-2 pathobiology or COVID-19 prognosis.

16.
World J Virol ; 10(4): 137-155, 2021 Jul 25.
Article in English | MEDLINE | ID: covidwho-1348758

ABSTRACT

Genome-wide association analysis allows the identification of potential candidate genes involved in the development of severe coronavirus disease 2019 (COVID-19). Hence, it seems that genetics matters here, as well. Nevertheless, the virus's nature, including its RNA structure, determines the rate of mutations leading to new viral strains with all epidemiological and clinical consequences. Given these observations, we herein comment on the current hypotheses about the possible role of the genes in association with COVID-19 severity. We discuss some of the major candidate genes that have been identified as potential genetic factors associated with the COVID-19 severity and infection susceptibility: HLA, ABO, ACE2, TLR7, ApoE, TYK2, OAS, DPP9, IFNAR2, CCR2, etc. Further study of genes and genetic variants will be of great benefit for the prevention and assessment of the individual risk and disease severity in different populations. These scientific data will serve as a basis for the development of clinically applicable diagnostic and prognostic tests for patients at high risk of COVID-19.

17.
Heliyon ; 7(6): e07379, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1284109

ABSTRACT

The COVID-19 pandemic has infected over 25 million of people worldwide, 5% of whom evolved to death and, among of the active cases, more than 60 thousand are classified as critical or severe. Recent studies revealed that ApoE, a protein encoded by APOE gene, may increase the risk of severe COVID-19 cases. ApoE has been involved with prevention of tissue damage and promotion of adaptative immune response in the lungs. This study investigated frequencies distribution of alleles that alter the ApoE expression in lung tissues to trace a profile of these variants and associate them to COVID-19 clinical outcomes. Data about APOE expression levels was obtained from the Genotype-Tissue Expression Project and the allele frequencies of APOE variants was acquired from the populations included in the phase 3 release of the 1000 Genomes Project. A total of 128 variants showed a significant impact on the APOE expression in lung tissues (p < 0.0001). Linkage Disequilibrium analysis revealed that 98 variants were closely grouped into seven distinct haplotype blocks, of which six were composed of variants that significantly decrease APOE gene expression in the lungs. Most of the haplotypes with higher impact on APOE expression showed greater frequencies in Europeans and lower in Africans, which implies that European populations might be more susceptible to SARS-CoV-2 infection. The present study indicates a potential genetic contribution of APOE expression-modifying variants in modulating the prognosis of COVID-19.

18.
Vaccines (Basel) ; 9(6)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282660

ABSTRACT

This review describes investigations of specific topics that lie within the general subject of HSV1's role in AD/dementia, published in the last couple of years. They include studies on the following: relationship of HSV1 to AD using neural stem cells; the apparent protective effects of treatment of HSV1 infection or of VZV infection with antivirals prior to the onset of dementia; the putative involvement of VZV in AD/dementia; the possible role of human herpes virus 6 (HHV6) in AD; the seemingly reduced risk of dementia after vaccination with diverse types of vaccine, and the association shown in some vaccine studies with reduced frequency of HSV1 reactivation; anti-HSV serum antibodies supporting the linkage of HSV1 in brain with AD in APOE-ε4 carriers, and the association between APOE and cognition, and association of APOE and infection with AD/dementia. The conclusions are that there is now overwhelming evidence for HSV1's role-probably causal-in AD, when it is present in brain of APOE-ε4 carriers, and that further investigations should be made on possible prevention of the disease by vaccination, or by prolonged antiviral treatment of HSV1 infection in APOE-ε4 carriers, before disease onset.

19.
Alzheimers Res Ther ; 13(1): 111, 2021 Jun 12.
Article in English | MEDLINE | ID: covidwho-1266503

ABSTRACT

Challenges have been recognized in healthcare of patients with Alzheimer's disease (AD) in the COVID-19 pandemic, given a high infection and mortality rate of COVID-19 in these patients. This situation urges the identification of underlying risks and preferably biomarkers for evidence-based, more effective healthcare. Towards this goal, current literature review and network analysis synthesize available information on the AD-related gene APOE into four lines of mechanistic evidence. At a cellular level, the risk isoform APOE4 confers high infectivity by the underlying coronavirus SARS-CoV-2; at a genetic level, APOE4 is associated with severe COVID-19; at a pathway level, networking connects APOE with COVID-19 risk factors such as ACE2, TMPRSS2, NRP1, and LZTFL1; at a behavioral level, APOE4-associated dementia may increase the exposure to coronavirus infection which causes COVID-19. Thus, APOE4 could exert multiple actions for high infection and mortality rates of the patients, or generally, with COVID-19.


Subject(s)
Alzheimer Disease , COVID-19 , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Humans , Pandemics , SARS-CoV-2
20.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: covidwho-1134166

ABSTRACT

Emerging data indicate that neurological complications occur as a consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood-brain barrier (BBB) is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2. We consider aspects of peripheral disease, such as hypoxia and systemic inflammatory response syndrome/cytokine storm, as well as CNS infection and mechanisms of viral entry into the brain. We also discuss the contribution of risk factors for developing severe COVID-19 to BBB dysfunction that could increase viral entry or otherwise damage the brain.


Subject(s)
Blood-Brain Barrier/physiopathology , Blood-Brain Barrier/virology , COVID-19/virology , SARS-CoV-2/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/virology , COVID-19/epidemiology , Central Nervous System Diseases/etiology , Central Nervous System Diseases/virology , Comorbidity , Humans , SARS-CoV-2/chemistry , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL